Kalkulators plūsmas aprēķināšanai atkarībā no vidējā plūsmas ātruma un plūsmas ātruma

Plūsmas ātrums Q un plūsmas plūsmas vidējā ātruma V apaļās caurules caurule ar diametru D ir saistītas ar

Lai veiktu aprēķinus automātiskajā režīmā, izvēlieties atbilstošo formu (plūsmas aprēķins vai ātruma aprēķins) un ievadiet zināmās vērtības attiecīgajos laukos.

Vidējā caurplūduma šķērsgriezuma aprēķināšana ar zināmu plūsmas ātrumu

Ievadiet nepieciešamos datus, lai aprēķinātu ātrumu, norādiet mērvienības.

Patēriņa aprēķins ar zināmu likmi

Lai aprēķinātu plūsmas ātrumu, attiecīgajos laukos jāprecizē caurules sekcijas plūsmas ātrums un diametrs.

Apgriezienu un plūsmas diametra aprēķins

Cauruļvada diametrs, plūsmas ātrums un dzesēšanas plūsma.

Šis materiāls ir paredzēts, lai saprastu, kas ir diametrs, plūsmas ātrums un plūsmas ātrums. Un kādas ir saiknes starp tām. Citos materiālos tiks detalizēts apkures diametra aprēķins.

Lai aprēķinātu diametru, kas jums jāzina:

Šeit ir nepieciešamās formulas, kas jums jāzina:

Izturība pret dzesēšanas šķidruma kustību.

Jebkurā dzesēšanas šķidrumā, kas pārvietojas caurules iekšpusē, jācenšas to apturēt. Spēks, ko izmanto, lai apturētu dzesēšanas šķidruma kustību, ir pretestības spēks.

Šo pretestību sauc par spiediena zudumu. Tas nozīmē, ka kustīga dzesēšanas šķidruma caur caurulīti ar noteiktu garumu zaudē spiedienu.

Galva tiek mērīta metros vai ar spiedienu (Pa). Lai nodrošinātu ērtību, aprēķinos ir jāizmanto skaitītāji.

Lai dziļāk izprastu šī materiāla nozīmi, es ieteiktu sekot problēmas risinājumam.

Cauruļvadā, kura iekšējais diametrs ir 12 mm, ūdens plūst ar ātrumu 1 m / s. Atrast rēķinus.

Risinājums: jums jāizmanto iepriekš minētās formulas:

S = 3,14 • 0,012 2/4 = 0,000113 m 2

Q = 0,000113 • 1 = 0,000113 m 3 / s = 0,4 m 3 / h.

Ir sūknis, kas rada pastāvīgu plūsmu 40 litri minūtē. Sūknim ir pievienota 1 metru garā caurule. Atrodiet caurules iekšējo diametru ar ūdens ātrumu 6 m / s.

Q = 40 l / min = 0,000666666 m 3 / s

No iepriekšminētajām formulām saņēma šādu formulu.

Katram sūknim ir šāda plūsmas pretestības īpašība:

Tas nozīmē, ka mūsu plūsma caurules galā būs atkarīga no spiediena zudumiem, ko rada pati caurule.

Sīkāka informācija par spiediena zudumu gar cauruļvada garumu ir apskatīta šajā rakstā:

Un tagad mēs izskatīsim problēmu no reāla piemēra.

Tērauda (dzelzs) caurule ir novietota 376 metru garumā un iekšējais diametrs ir 100 mm, cauruļvada garumā ir 21 izvads (90 ° leņķveida pagriezieni). Caurule ir novietota ar pilienu 17 m. Tas nozīmē, ka caurule attiecībā pret horizontu iet līdz augstumam 17 metri. Sūkņa raksturojums: Maksimālā galva 50 metri (0,5 MPa), maksimālais plūsmas ātrums 90 m 3 / h. Ūdens temperatūra ir 16 ° C. Atrodiet maksimāli iespējamo plūsmas ātrumu caurules galā.

Atrodiet maksimālo plūsmu =?

Video risinājums:

Lai atrisinātu, ir jāzina sūkņu grafiks: plūsmas atkarība no spiediena.

Mūsu gadījumā būs šāds grafiks:

Meklējiet ar liektu līniju horizontā, kas apzīmēta ar 17 metriem, un krustojumā gar līkni iegūstiet maksimālo iespējamo plūsmu: Qmax.

Saskaņā ar grafiku es varu droši teikt, ka augstuma atšķirībā mēs zaudējam aptuveni: 14 m 3 / stundā. (90-Qmax = 14 m 3 / h).

Step aprēķins tiek iegūts, jo formulā ir kvadrātiskā iezīme galvas zaudējumu dinamika (kustība).

Tāpēc mēs risinām problēmu pakāpeniski.

Tā kā mums ir izdevumu intervāls no 0 līdz 76 m 3 / h, tad es vēlētos pārbaudīt spiediena zudumus par izdevumiem, kas vienādi ar: 45 m 3 / h.

Atrodiet ūdens ātrumu

Q = 45 m 3 / h = 0,0125 m 3 / s.

V = (4 • 0,0125) / (3,14 • 0,1 • 0,1) = 1,59 m / s

Atrodiet Reinoldsa numuru

ν = 1,16 • 10 -6 = 0,00000116. Ņemts no galda. Ūdenim temperatūrā 16 ° C.

Δe = 0,1 mm = 0,0001 m. No tabulas ņemta tērauda (dzelzs) caurule.

Tālāk mēs pārbaudām tabulu, kur atrodam formulu hidrauliskās berzes koeficienta noteikšanai.

Es nokļuvu otrajā apgabalā

10 • D / Δe 0,25 = 0,11 • (0,0001 / 0,1 + 68/137069) 0,25 = 0,0216

Tālāk mēs aizpildām formulu:

h = λ • (L • V 2) / (D • 2 • g) = 0,0216 • (376 • 1,59 • 1,59) / (0,1 • 2 • 9,81) = 10,46 m

Kā redzat, zaudējumi ir 10 metri. Tālāk mēs definējam Q1, skatiet grafiku:

Tagad mēs veicam sākotnējo aprēķinu ar plūsmas ātrumu, kas vienāds ar 64m 3 / stundā

Q = 64 m 3 / h = 0,018 m 3 / s.

V = (4 • 0,018) / (3,14 • 0,1 • 0,1) = 2,29 m / s

λ = 0.11 (Δe / D + 68 / Re) 0.25 = 0.11 • (0.0001 / 0.1 + 68/197414) 0.25 = 0.021

h = λ • (L • V 2) / (D • 2 • g) = 0,021 • (376 • 2,29 • 2,29) / (0,1 • 2 • 9,81) = 21,1 m.

Mēs atzīmējam diagrammu:

Qmax atrodas līknes krustojumā Q1 un Q2 (tieši līknes vidū).

Atbilde: Maksimālais plūsmas ātrums ir 54 m 3 / h. Bet to mēs nolēmām bez pretestības pret stūriem.

Lai pārbaudītu čeku:

Q = 54 m 3 / h = 0,015 m 3 / s.

V = (4 • 0,015) / (3,14 • 0,1 • 0,1) = 1,91 m / s

λ = 0,11 (Δe / D + 68 / Re) 0,25 = 0,11 • (0,0001 / 0,1 + 68/164655) 0,25 = 0,0213

h = λ • (L • V 2) / (D • 2 • g) = 0,0213 • (376 • 1,91 • 1,91) / (0,1 • 2 • 9,81) = 14,89 m

Apakšējā rinda: mēs nospiedām Hsviedri= 14,89 = 15m.

Tagad aprēķinām izturību pret pagriezieniem:

Formula, kā atrast spiedienu uz vietējo hidraulisko pretestību:

ζ ir vilces koeficients. Ceļa gadījumā tas ir aptuveni tāds pats, ja diametrs ir mazāks par 30 mm. Lieliem diametriem tas samazinās. Tas ir saistīts ar faktu, ka ūdens kustības ātruma ietekme attiecībā pret rotāciju samazinās.

Es paskatījos dažādās grāmatās par vietējo pretestību, lai pagrieztu cauruli un līkumus. Un bieži vien aprēķinos tika secināts, ka viens spēcīgs asu pagrieziens ir vienāds ar koeficienta vienību. Tiek ņemts vērā asis pagrieziens, ja pagrieziena rādiuss pēc vērtības nepārsniedz diametru. Ja rādiuss pārsniedz diametru 2-3 reizes, tad koeficienta vērtība ir ievērojami samazināta.

Ātrums 1,91 m / s

h = ζ • (V 2) / 2 • 9,81 = (1 • 1,91 2) / (2 • 9,81) = 0,18 m.

Šo vērtību reizina ar krānu skaitu, un mēs saņemam 0,18 • 21 = 3,78 m.

Atbilde: ar ātrumu 1,91 m / s, mēs saņemam spiediena zudumu 3,78 metri.

Tagad atrisināsim visu problēmu ar krāniem.

Pie plūsmas ātruma 45 m 3 / h, tika iegūts spiediena zudums gar garumu: 10,46 m. ​​Skatieties augstāk.

Pie šī ātruma (2,29 m / s) mēs atrodam pretestību stūros:

h = ζ • (V 2) / 2 • 9,81 = (1 • 2,29 2) / (2 • 9,81) = 0,27 m. Mēs reizinām ar 21 = 5,67 m.

Spiediena zuduma pievienošana: 10,46 + 5,67 = 16,13 m.

Mēs atzīmējam diagrammu:

Mēs to atrisinām vienīgi ar plūsmas ātrumu 55 m 3 / h

Q = 55 m 3 / h = 0,015 m 3 / s.

V = (4 • 0,015) / (3,14 • 0,1 • 0,1) = 1,91 m / s

λ = 0,11 (Δe / D + 68 / Re) 0,25 = 0,11 • (0,0001 / 0,1 + 68/164655) 0,25 = 0,0213

h = λ • (L • V 2) / (D • 2 • g) = 0,0213 • (376 • 1,91 • 1,91) / (0,1 • 2 • 9,81) = 14,89 m

h = ζ • (V 2) / 2 • 9,81 = (1 • 1,91 2) / (2 • 9,81) = 0,18 m. Mēs reizinām ar 21 = 3,78 m.

Zaudējumu pievienošana: 14,89 + 3,78 = 18,67 m

Mēs izmantojam diagrammu:

Atbilde: Maksimālā plūsma = 52 m 3 / h. Bez izejām Qmax = 54 m 3 / h.

Tā rezultātā diametra lielumu ietekmē:

Ja plūsma caurules galā ir mazāka, tad tas ir nepieciešams: vai nu palielināt diametru, vai palielināt sūkņa jaudu. Sūkņa jaudas palielināšana nav ekonomiska.

Šis raksts ir daļa no sistēmas: Dizainera ūdens sildīšana

Ūdens plūsma caur cauruli pie pareizā spiediena

Raksta saturs

Galvenais uzdevums aprēķināt ūdens patēriņa apjomu cauruļvadā pār tā šķērsgriezumu (diametrs) ir izvēlēties caurules tā, lai plūsmas ātrums nebūtu pārāk liels un spiediens būtu labs. Tajā jāņem vērā:

  • diametri (iekšējās daļas DN),
  • galvas zaudējumi aprēķinātajā platībā,
  • ūdens plūsmas ātrums
  • maksimālais spiediens
  • apgriezienu un vārtu ietekme sistēmā,
  • materiāls (cauruļvada sienu īpašības) un garums utt.

Ūdens plūsmas caurules diametra izvēle, izmantojot tabulu, tiek uzskatīta par vienkāršāku, bet mazāk precīzu, nekā mērīt un aprēķināt spiedienu, ūdens ātrumu un citus cauruļvada parametrus, kas veikti vietējā līmenī.

Tabulu standarta dati un galveno parametru vidējie rādītāji

Lai noteiktu aprēķināto maksimālo ūdens plūsmu caur cauruli, tiek parādīta tabula 9 visbiežāk sastopamajiem diametriem dažādos spiedienos.

Vidējais spiediens lielākajā daļā stāvvada ir robežās no 1,5-2,5 atmosfēras. Pašreizējā atkarība no stāvu skaita (īpaši ievērojama augstceltnēs) tiek regulēta, sadalot ūdensapgādes sistēmu vairākos segmentos. Ūdens iesmidzināšana, izmantojot sūkņus, ietekmē arī plūsmas ātruma izmaiņas. Turklāt, atsaucoties uz tabulām, aprēķinot ūdens patēriņu, jāņem vērā ne tikai krānu skaits, bet arī ūdens sildītāju, vannu un citu avotu skaits.

Izmaiņas celtņa caurlaidības īpašībās ar ūdens plūsmas regulatoru palīdzību, ekonomisti, kas ir līdzīgi WaterSave (http://water-save.com/), tabulās nav ierakstīti un parasti netiek ņemti vērā, aprēķinot ūdens patēriņu caur (caur) caurulēm.

Metodes ūdens plūsmas un cauruļvada diametra aprēķināšanai

Izmantojot tālāk norādītās formulas, jūs varat gan aprēķināt ūdens plūsmu caurulē, gan noteikt caurules diametra atkarību no ūdens plūsmas.

Šajā formā dreifēt:

  • zem q, ņem plūsmas ātrumu l / s,
  • V - nosaka plūsmas ātrumu m / s,
  • d - iekšējā daļa (diametrs cm).

Apzinoties ūdens patēriņu un d-sekciju, varat, izmantojot apgrieztos aprēķinus, iestatīt ātrumu vai, zinot plūsmu un ātrumu, noteikt diametru. Ja ir papildu kompresors (piemēram, daudzstāvu ēkās), tās radītās hidrauliskās plūsmas spiediens un ātrums ir norādīts ierīces pasē. Bez papildu injekcijas plūsmas ātrums visbiežāk mainās diapazonā no 0,8 līdz 1,5 m / s.

Lai iegūtu precīzākus aprēķinus, ņemtu vērā spiediena zudumu, izmantojot Darksa formulu:

Lai aprēķinātu, nepieciešams papildus instalēt:

  • cauruļvada garums (L)
  • zaudējumu koeficients, kas atkarīgs no cauruļvadu sienu nelīdzenuma, turbulences, izliekuma un sekcijām ar vārstiem (λ),
  • šķidruma viskozitāte (ρ).

Attiecību starp cauruļvada D vērtību, plūsmas ātrumu (V) un ūdens patēriņu (q), ņemot vērā slīpuma leņķi (i), var izteikt tabulā, kur divas zināmas vērtības ir savienotas ar taisnu līniju, un vajadzīgās vērtības vērtība būs redzama skalas un taisnas līnijas krustojumā.

Tehniskajā pamatojumā arī tiek veidoti darbības un kapitāla izmaksu grafiki, definējot optimālo D vērtību, kas ir noteikta darbības un kapitāla izmaksu līknes krustošanās punktā.

Ūdens plūsmas caur cauruli aprēķināšana, ņemot vērā spiediena kritumu, var tikt veikta, izmantojot tiešsaistes kalkulatorus (piemēram: http://allcalc.ru/node/498; https://www.calc.ru/gidravlicheskiy-raschet-truboprovoda.html). Hidrauliskajam aprēķinam, kā tas ir formulā, jāņem vērā zaudējumu faktors, kas nozīmē izvēli:

  1. pretestības aprēķināšanas metode
  2. cauruļvadu sistēmu materiāls un tips (tērauds, čuguns, azbests, dzelzsbetons, plastmasa), kur tiek ņemts vērā, ka, piemēram, plastmasas virsmas ir mazāk raupjošas nekā tērauda un nerodas korozija,
  3. iekšējais diametrs
  4. iedaļas garums
  5. spiediena kritums katram cauruļvada skaitītājam.

Daži kalkulatori ņem vērā cauruļvadu sistēmu papildu īpašības, piemēram:

  • jauns vai ne jauns ar bitumena pārklājumu vai bez iekšējās plēves
  • ar ārēju plastmasas vai polimēru pārklājumu
  • ar ārējo cementa-smilšu pārklājumu, ko izmanto dažādās metodēs utt.

Atstājiet komentāru un pievienojieties diskusijai.

Kā aprēķināt cauruļvada diametru

Darbs ar kalkulatoru ir vienkāršs - ievadiet datus un iegūstiet rezultātu. Bet dažkārt to nepietiek - precīzs cauruļvada diametra aprēķins ir iespējams tikai ar manuālo aprēķinu, izmantojot formulas un pareizi izvēlētiem koeficientiem. Kā aprēķināt caurules diametru ūdens plūsmas ziņā? Kā noteikt gāzes līnijas lielumu?

Cauruļvads un tā daļas

Profesionāli inženieri, aprēķinot vajadzīgo caurules diametru, visbiežāk izmanto īpašas programmas, kuras var aprēķināt un iegūt precīzu rezultātu, izmantojot zināmos parametrus. Amatieru celtniekam ir daudz grūtāk organizēt ūdensapgādi, apkuri, gazifikācijas sistēmas, lai neatkarīgi veiktu aprēķinu. Tāpēc visbiežāk privātmājas būvniecībā vai rekonstrukcijā tiek izmantoti ieteicamie cauruļu izmēri. Bet ne vienmēr standarta padomēs var ņemt vērā visas individuālās konstrukcijas nianses, tāpēc jums ir nepieciešams manuāli veikt hidraulisko aprēķinu, lai pareizi izvēlētos caurules diametru apkures un ūdens apgādei.

Ūdens piegādes un apkures caurules diametra aprēķins

Galvenais apkures cauruļu izvēles kritērijs ir tā diametrs. No šī indikatora atkarīgs, cik efektīva būs ēkas apsildīšana, visas sistēmas ekspluatācija. Cauruļvados ar nelielu diametru var rasties paaugstināts spiediens, kas var izraisīt noplūdes, palielināt stresu uz cauruļvadiem un metālu, kas radīs problēmas un bezgala remontu. Ar lielu diametru apkures sistēmas siltuma jauda pārsniedz nulli, un aukstā ūdens vienkārši izplūst no jaucējkrāns.

Cauruļu ietilpība

Caurules diametrs tieši ietekmē sistēmas jaudu, tas ir, šajā gadījumā ūdens vai siltumnesēja daudzums, kas šķērso šķidruma daļu laika vienības laikā. Jo vairāk ciklu (kustību) sistēmā noteiktā laika periodā, jo efektīvāka ir apkure. Ūdens padeves caurulēm diametrs ietekmē sākotnējo ūdens spiedienu - piemērots izmērs atbalsta tikai galvu, un palielinātais izmērs samazināsies.

Izvēlēto santehnikas un apkures shēmas diametrs, radiatoru skaits un to sadalīšana nosaka optimālo līniju garumu.

Tā kā caurules jauda ir būtisks izvēles faktors, tas jānosaka un, savukārt, ietekmē ūdens plūsmu cauruļvadā.

Caurules diametra kalkulators

Cauruļvada nepieciešamā diametra aprēķins šajā kalkulatorā ir atsauces vērtība, kas var kalpot kā sākumpunkts cauruļu, armatūras un citu cauruļvadu sastāvdaļu un daļu projektēšanā. Aprēķina formula komponenta pamatā ir cauruļvada plūsmas ātruma atkarība no tā diametra un barotnes ātruma:

Q = ((πd 2) / 4) • w, kur

Q - šķidruma plūsma;
d ir cauruļvada diametrs;
w - plūsmas ātrums.

Izvēloties matemātiskās transformācijas cauruļvadu diametrs d vērtības mums ir dota jums iespēju on-line, aprēķinot attiecīgos avota datus.

Ūdens patēriņa aprēķins ar cauruļu diametru un spiedienu saskaņā ar tabulu un SNIP 2.04.01-85 + kalkulators

Uzņēmumi un mājas patērē lielu daudzumu ūdens. Šie ciparu indikatori ne tikai liecina par konkrētu vērtību, kas norāda plūsmas ātrumu.

Turklāt tie palīdz noteikt cauruļvadu maisījuma diametru. Daudzi uzskata, ka ūdens patēriņa aprēķināšana caur caurules diametru un spiedienu nav iespējama, jo šie jēdzieni ir pilnībā nesaistīti.

Bet prakse ir parādījusi, ka tā nav. Ūdensapgādes tīkla jauda ir atkarīga no daudziem rādītājiem, un pirmais šajā sarakstā būs caurules maisījuma diametrs un spiediens cauruļvadā.

Visus aprēķinus ieteicams veikt cauruļvada būvniecības projekta posmā, jo iegūtie dati nosaka galvenos parametrus ne tikai vietējam, bet arī rūpnieciskajam cauruļvadam. Tas viss tiks apspriests tālāk.

Tiešsaistes ūdens kalkulators

Kādi faktori ietekmē šķidruma plūsmu caur cauruļvadu

Kritēriji, kas ietekmē aprakstīto indikatoru, veido garu sarakstu. Šeit ir daži no tiem.

  1. Cauruļvada iekšējais diametrs.
  2. Straumes kustības ātrums, kas ir atkarīgs no spiediena līnijā.
  3. Materiāls, kas ņemts cauruļu sortimenta ražošanai.

Ūdens plūsmas noteikšana pie līnijas izejas tiek veikta caurules diametrā, jo šī īpašība kopā ar citām ietekmē sistēmas caurlaidspēju. Arī aprēķinot patērētās šķidruma daudzumu, jūs nevarat atlaide sienas biezumu, kas tiek noteikts, pamatojoties uz paredzēto iekšējo spiedienu.

Var pat teikt, ka "caurules ģeometrijas" definīciju neietekmē tikai tīkla garums. Un šķērsgriezumam, spiedienam un citiem faktoriem ir ļoti svarīga loma.

Turklāt daži sistēmas parametri tieši ietekmē patēriņu, nevis tieši, bet netieši. Tas ietver sūknētā materiāla viskozitāti un temperatūru.

Apkopojot nelielu rezultātu, varam teikt, ka caurlaidspējas definīcija ļauj precīzi noteikt optimālo materiāla veidu sistēmas būvei un izvēlēties montāžas tehnoloģiju. Pretējā gadījumā tīkls nedarbosies efektīvi, un tas prasīs biežu ārkārtas remontu.

Ūdens patēriņa aprēķins apaļās caurules diametram ir atkarīgs no tā izmēra. Līdz ar to lielāka šķērsgriezuma daļa uz noteiktu laiku pāriet lielākam šķidruma daudzumam. Bet, veicot aprēķinu un ņemot vērā diametru, spiedienu nevar atlaist.

Ja mēs uzskatām šo aprēķinu par konkrētu piemēru, izrādās, ka mazāk šķidrums caur kādu metru garu cauruļu produktu caur kādu 1 cm caurumu noteiktā laika periodā iet caur garu līniju, kas sasniedz desmitus metrus augstumā. Tas ir dabiski, jo augstākais ūdens patēriņš vietnē dos maksimālu veiktspēju tīkla visaugstākajā spiedienā un visaugstākajā apjomā.

SNIP 2.04.01-85 sadaļas aprēķins

Pirmkārt, ir jāsaprot, ka caurteces diametra aprēķins ir sarežģīts inženierijas process. Tam būs nepieciešamas īpašas zināšanas. Bet, veicot mājsaimniecības būvniecību ar ūdens caurlaides līniju, bieži hidraulisko aprēķinu šķērsgriezums tiek veikts neatkarīgi.

Šis šķidruma plūsmas ātruma aprēķina veids var tikt veikts divējādi. Pirmais ir tabulas dati. Bet, atsaucoties uz tabulām, ir jāzina ne tikai precīzs krānu skaits, bet arī ūdens (vannas, izlietnes) konteineri un citas lietas.

Tikai tad, ja jums ir šī informācija par vārsta sistēmu, varat izmantot tabulas, kuras sniedz SNIP 2.04.01-85. Pēc viņu domām un nosaka ūdens daudzumu caurules apvalkā. Šeit ir viena no šīm tabulām:

Cauruļvada diametra noteikšana

Cauruļvada spiediena zudums, cita starpā, ir atkarīgs no plūsmas vides plūsmas ātruma un viskozitātes. Jo lielāks tvaika daudzums, kas iet cauri cauruļvadam ar noteiktu nominālo diametru, jo lielāks ir berze pret cauruļvada sienām. Citiem vārdiem sakot, jo augstāka ir tvaika ātrums, jo lielāka pretestība vai spiediena zudumi cauruļvadā.

Cik lielu spiediena zudumu var noteikt tvaika nolūks. Ja pārkarsēts tvaiks tiek piegādāts caur cauruļvadu uz tvaika turbīnu, spiediena zudumiem jābūt pēc iespējas zemākam. Šādi cauruļvadi ir daudz dārgāki nekā tradicionālie, un lielāks diametrs savukārt rada ievērojami lielākas izmaksas. Investīciju aprēķins ir balstīts uz ieguldījumu kapitāla atdeves laiku (atmaksāšanās periodu), salīdzinot ar turbīnas peļņu.

Šis aprēķins nedrīkst būt balstīts uz vidējo turbīnas slodzi, bet tikai uz tā maksimālo slodzi. Ja, piemēram, maksimālā noslodze 1000 kg tvaika tiek sūknēta 15 minūšu laikā, cauruļvada caurplūde ir 60 / 15x 1000 = 4000 kg / h.

Aprēķins

Nākamajā nodaļā - Darbs ar kondensātu - izskaidro metodi, kā aprēķināt kondensāta diametru. Tvaika gaisa un ūdens apgādes sistēmu aprēķinos piemēro aptuveni tādus pašus sākotnējos principus. Šī tēmas beigās šajā sadaļā tiks doti aprēķini, lai noteiktu tvaika un ūdens piegādes sistēmu diametru.

Aprēķinot diametrus, galveno formulu izmanto:

Q = tvaika, gaisa un ūdens patēriņš m 3 / s.

D = cauruļvada diametrs m.

v = pieļaujamais plūsmas ātrums m / s.

Praksē ieteicams aprēķināt plūsmu m 3 / h un cauruļvada diametru mm. šajā gadījumā iepriekšminētā formula cauruļvada diametra aprēķināšanai tiek mainīta šādi:

D = kondensāta līnijas diametrs mm.

Q = plūsmas ātrums m 3 / h.

V = pieļaujamais plūsmas ātrums m / s.

Cauruļvadu aprēķināšanu vienmēr veic tilpuma plūsmai (m 3 / h), nevis masas plūsmai (kg / h). Ja ir zināma tikai masas plūsma, tad, konvertējot kg / h līdz m 3 / h, jāņem vērā īpašais tilpums atbilstoši tvaika galdam.

Īpašais piesātinātā tvaika tilpums pie spiediena 11 bāri ir 0,1747 m 3 / kg. Tādējādi tilpuma plūsmas ātrums no 1000 kg / h piesātināta tvaika ar 11 bariem būs 1000 * 0.1747 = 174.7 m 3 / h. Ja mēs runājam par tādu pašu pārkarsētā tvaika daudzumu ar spiedienu 11 bāri un 300 ° C, tad īpašais tilpums būs 0,2337 m 3 / kg, un tilpuma plūsma būs 233,7 m 3 / h. Tādējādi tas nozīmē, ka viena un tā pati tvaika līnija nevar būt vienādi piemērota tāda paša daudzuma piesātinātā un pārkarsētā tvaika transportēšanai.

Arī gaisa un citu gāzu gadījumā aprēķins jāatkārto, ņemot vērā spiedienu. Kompresoru iekārtu ražotāji norāda kompresora ietilpību m 3 / h, ko saprot kā tilpumu m 3 temperatūrā 0 ° C.

Ja kompresora jauda ir 600 mp 3 / h un gaisa spiediens ir 6 bāri, tad tilpuma plūsma ir 600/6 = 100 m 3 / h. tas ir arī cauruļvadu aprēķina pamats.

Pieļaujamais plūsmas ātrums

Cauruļvadu sistēmā pieļaujamais plūsmas ātrums ir atkarīgs no daudziem faktoriem.

  • uzstādīšanas izmaksas: zems plūsmas ātrums ļauj izvēlēties lielāku diametru.
  • spiediena zudums: augsts plūsmas ātrums ļauj izvēlēties mazāku diametru, bet tas izraisa lielu spiediena zudumu.
  • nodilums: īpaši kondensāta gadījumā lielas plūsmas ātrums palielina eroziju.
  • troksnis: augsts plūsmas ātrums palielina trokšņu slodzi, piemēram. Tvaika redukcijas vārsts.

Zemāk esošajā tabulā ir sniegti dati par plūsmas ātrumu dažām plūsmas plūsmām.

Cauruļvadu aprēķināšana un atlase. Optimālais cauruļvada diametrs

Cauruļvadi dažādu šķidrumu pārvadāšanai ir to vienību un iekārtu neatņemama sastāvdaļa, kurās tiek veikti darba procesi, kas saistīti ar dažādām pielietošanas jomām. Cauruļvadu izvēlei un cauruļvada konfigurācijai liela nozīme ir gan cauruļu, gan cauruļvadu pieslēgumu izmaksām. Galīgās izmaksas, kā sūknēt barotni caur cauruļvadu, lielā mērā nosaka caurules lielums (diametrs un garums). Šo vērtību aprēķināšana tiek veikta, izmantojot speciāli izstrādātas formulas, kas ir specifiskas noteiktiem darbības veidiem.

Caurule ir dobs metāla, koka vai cita materiāla cilindrs, ko izmanto šķidro, gāzveida un beztaras materiālu transportēšanai. Ūdens, dabasgāze, tvaiks, naftas produkti uc var darboties kā kustīga vide. Caurules tiek izmantotas visur, sākot ar dažādām nozarēm un beidzot ar mājsaimniecības lietošanu.

Cauruļu ražošanā var izmantot dažādus materiālus, piemēram, tēraudu, čugunu, varu, cementu, plastmasu, piemēram, ABS plastmasu, polivinilhlorīdu, hlorētu polivinilhlorīdu, polibutilēnu, polietilēnu uc

Caurules galvenie izmēri ir tā diametrs (ārējais, iekšējais uc) un sienas biezums, ko mēra milimetros vai collas. Izmanto arī tādu vērtību kā nominālais diametrs vai nominālais diametrs - caurules iekšējā diametra nominālais izmērs, mērot arī milimetros (apzīmēts ar Du) vai collas (apzīmēts ar DN). Nominālo diametru vērtības ir standartizētas un ir galvenais kritērijs cauruļu un veidgabalu izvēlē.

Nosacīto vērtību atbilstība mm un collas:

Cauruļu ar apļveida šķērsgriezumu priekšroka ir pārējo ģeometrisko sekciju dēļ vairāku iemeslu dēļ:

  • Aplim ir minimālais perimetra attiecība pret zonu un tas ir piemērojams cauruļvadam, tas nozīmē, ka ar vienādu caurlaidspēju apaļu formu cauruļu materiāla patēriņš būs minimāls salīdzinājumā ar citu formu caurulēm. Tas arī nozīmē minimālo iespējamo izolācijas un aizsargpārklājumu izmaksas;
  • Apļveida šķērsgriezums ir visizdevīgākais šķidruma vai gāzes plūsmas pārvietošanai no hidrodinamiskā viedokļa. Tāpat, ņemot vērā minimālo iespējamo caurules iekšējo platību uz tā garuma vienību, berzes starp pārvietoto šķidrumu un minimālo cauruļvadu.
  • Apaļa forma ir visizturīgākā pret iekšējo un ārējo spiedienu;
  • Apļveida cauruļu izgatavošanas process ir diezgan vienkāršs un viegli īstenojams.

Caurules var ievērojami atšķirties diametrā un konfigurācijā atkarībā no mērķa un pielietojuma. Tātad galvenie cauruļvadi ūdens vai naftas produktu pārvietošanai var sasniegt gandrīz pusmetru diametrā ar diezgan vienkāršu konfigurāciju, un sildīšanas spoles, kas ir arī caurule, ar mazu diametru ir sarežģītas formas ar daudziem pagriezieniem.

Nevaru iedomāties kādu nozari bez cauruļvadu tīkla. Jebkura šāda tīkla aprēķins ietver cauruļu materiāla izvēli, specifikāciju sagatavošanu, kurā uzskaitīti dati par biezumu, cauruļu izmēru, maršrutu uc Izejvielas, starpprodukts un / vai gatavais produkts iziet cauri ražošanas posmam, pārvietojoties starp dažādām ierīcēm un iekārtām, kuras savieno cauruļvadi un armatūra. Pareiza cauruļvadu sistēmas aprēķināšana, izvēle un uzstādīšana ir nepieciešama, lai droši īstenotu visu procesu, nodrošinot drošu mediju pārnesi, kā arī sistēmas blīvēšanai un sūknētās vielas noplūžu novēršanai atmosfērā.

Nav vienotas formulas un noteikumus, kurus varētu izmantot cauruļvada izvēlei iespējamai lietošanai un darba videi. Katrā atsevišķā cauruļvadu pielietošanas jomā ir vairāki faktori, kas jāņem vērā un kas var ievērojami ietekmēt cauruļvada prasības. Piemēram, strādājot ar dūņām, liels cauruļvads ne tikai palielinās uzstādīšanas izmaksas, bet arī radīs darba grūtības.

Parasti caurules tiek atlasītas pēc materiālu optimizācijas un ekspluatācijas izmaksām. Jo lielāks ir cauruļvada diametrs, tas ir, jo augstāks ir sākotnējais ieguldījums, jo zemāks spiediena kritums un attiecīgi zemākas ekspluatācijas izmaksas. Savukārt cauruļvada nelielais izmērs samazinās pašas cauruļvadu un cauruļvadu veidgabalu primārās izmaksas, taču ātruma palielināšanās izraisīs zaudējumu pieaugumu, kas prasīs tērēt papildu enerģiju, lai sūknētu videi. Ātruma standarti, kas noteikti dažādiem lietojumiem, ir balstīti uz optimāliem projektēšanas apstākļiem. Cauruļvadu izmēri tiek aprēķināti, izmantojot šos standartus, ņemot vērā izmantošanas jomas.

Cauruļvadu projektēšana

Projektējot cauruļvadus, tiek ņemti šādi pamata konstrukcijas parametri:

  • nepieciešamo sniegumu;
  • cauruļvada iebraukšanas un izbraukšanas vieta;
  • vidēja kompozīcija, ieskaitot viskozitāti un īpatnējo svaru;
  • cauruļvada trases topogrāfiskie apstākļi;
  • maksimāli pieļaujamais darba spiediens;
  • hidrauliskais aprēķins;
  • cauruļvada diametrs, sienas biezums, stiepes materiāla sienas izturība;
  • sūkņu staciju skaits, attālums starp tiem un enerģijas patēriņš.

Cauruļvadu drošums

Cauruļvadu projektēšanas drošība tiek nodrošināta, ievērojot atbilstīgus projektēšanas standartus. Personāla apmācība ir arī galvenais faktors, nodrošinot cauruļvada ilgstošo ekspluatācijas laiku un tā sasprindzinājumu un uzticamību. Cauruļvada pastāvīgu vai periodisku uzraudzību var veikt ar kontroles, grāmatvedības, vadības, regulēšanas un automatizācijas sistēmām, ražošanas personālajām vadības ierīcēm, drošības ierīcēm.

Papildu cauruļvadu pārklājums

Korozijas necaurlaidīgs pārklājums tiek uzklāts ārpusē lielākajai daļai cauruļu, lai novērstu korozijas kaitīgo iedarbību no ārējās vides. Korozijas vides sūknēšanas gadījumā uz cauruļu iekšējās virsmas var uzklāt aizsargpārklājumu. Pirms nodošanas ekspluatācijā visas jaunās caurules, kas paredzētas bīstamu šķidrumu pārvadāšanai, tiek pārbaudītas attiecībā uz defektiem un noplūdēm.

Pamati plūsmas aprēķināšanai cauruļvadā

Plūsmas veids plūsmai cauruļvadā un plūsmas ap šķēršļiem var ievērojami atšķirties no šķidruma līdz šķidrumam. Viens no svarīgiem rādītājiem ir vidē viskozitāte, ko raksturo tāds parametrs kā viskozitātes koeficients. Īru fiziķis Osborne Reinolds 1880. gadā veica virkni eksperimentu, kuru rezultātā viņam izdevās iegūt bezmēra lielumu, kas raksturoja viskozā šķidruma plūsmas raksturu, ko sauc par Reinoldsa kritēriju un kuru apzīmē Re.

kur:
ρ ir šķidruma blīvums;
v - plūsmas ātrums;
L ir plūsmas elementa raksturīgais garums;
μ ir viskozitātes dinamikas koeficients.

Tas nozīmē, ka Reinoldsa kritērijs raksturo inerces spēku attiecību pret viskoziem berzes spēkiem šķidruma plūsmā. Šī kritērija vērtības izmaiņas atspoguļo šo spēka veidu attiecības izmaiņas, kas savukārt ietekmē šķidruma plūsmas raksturu. Šajā sakarībā ir parasts atšķirt trīs plūsmas režīmus atkarībā no Reinoldsa kritērija vērtības. Re 4000 režīmā jau ir novērots stabils režīms, ko raksturo netiešās izmaiņas plūsmas ātrumā un virzienā katrā atsevišķā punktā, kas kopā nodrošina plūsmas ātruma izlīdzināšanu visā tilpumā. Šādu režīmu sauc par nemierīgiem. Reinoldsa skaitlis ir atkarīgs no sūkņa norādītās galvas, vidējās vides viskozitātes darba temperatūrā, kā arī cauruļvada izmēra un formas, caur kuru plūsma iet.

Reinoldsa kritērijs ir līdzības kritērijs viskozes šķidruma plūsmai. Tas ir, ar tās palīdzību ir iespējams simulēt reālu procesu samazinātā izmērā, ērti studēt. Tas ir ārkārtīgi svarīgi, jo bieži vien ir ļoti sarežģīti un reizēm neiespējami izpētīt šķidruma plūsmu dabiskās īpatnības, ņemot vērā to lielo izmēru.

Cauruļvada aprēķins. Cauruļvada diametra aprēķins

Ja cauruļvads nav termiski izolēts, tas ir, ir iespējams apmainīt siltumu starp kustību un vidi, plūsmas raksturs tajā var mainīties pat nemainīgā ātrumā (plūsmā). Tas ir iespējams, ja sūknētajai barotnei ieplūdes atverē ir pietiekami augsta temperatūra un tā plūst turbulentā režīmā. Cauruļvada garumā kustīgās vides temperatūra samazināsies, pateicoties siltuma zudumiem apkārtējā vidē, kas var izraisīt plūsmas režīma izmaiņas laminārai vai pārejošai. Temperatūra, pie kuras notiek režīma maiņa, tiek saukta par kritisko temperatūru. Šķidruma viskozitātes vērtība ir atkarīga no temperatūras, tādēļ šādos gadījumos izmantojiet tādu parametru kā kritiskā viskozitāte, kas atbilst plūsmas režīma maiņas punktam Reinoldsa kritērija kritiskajā vērtībā:

kur:
νkr - kritiskā kinemātiskā viskozitāte;
Rekr - Reinoldsa kritērija kritiskā vērtība;
D ir caurules diametrs;
v - plūsmas ātrums;
Q - patēriņš.

Vēl viens svarīgs faktors ir berze, kas rodas starp caurules sienām un kustīgo plūsmu. Šajā gadījumā berzes koeficients lielā mērā ir atkarīgs no cauruļu sienu nelīdzenuma. Attiecības starp berzes koeficientu, Reinoldsa kritēriju un raupjumu nosaka Moody diagramma, kas ļauj noteikt vienu no parametriem, zinot pārējos divus.

Colebrook-White formula ir izmantota arī, lai aprēķinātu turbulentās plūsmas berzes koeficientu. Pamatojoties uz šo formulu, ir iespējams veidot grafikus, kuriem ir noteikts berzes koeficients.

(√ λ) -1 = -2 · log (2.51 / (Re · √ λ) + k / (3.71 · d))

kur:
k ir cauruļu nelīdzenuma koeficients;
λ ir berzes koeficients.

Ir arī citas formulas aptuvenai berzes zudumu aprēķināšanai šķidruma plūsmā caurulēs. Viens no visbiežāk izmantotajiem vienādojumiem šajā gadījumā ir Darcy-Weisbach vienādojums. Tas pamatojas uz empīriskiem datiem un tiek galvenokārt izmantots modelēšanas sistēmās. Berzes zudums ir atkarīgs no šķidruma ātruma un caurules pretestības šķidruma kustībai, kas izteikts cauruļvada sienu nelīdzenuma vērtības izteiksmē.

kur:
ΔH - galvas zaudējumi;
λ ir berzes koeficients;
L ir cauruļu sekcijas garums;
d ir caurules diametrs;
v - plūsmas ātrums;
g - gravitācijas paātrinājums.

Spiediena zudumu ūdens berzes dēļ aprēķina, izmantojot Hazen-Williams formulu.

ΔH = 11,23 · L · 1 / C 1,85 · Q 1,85 / D 4.87

kur:
ΔH - galvas zaudējumi;
L ir cauruļu sekcijas garums;
C ir Heizena-Viljamsa raupjuma koeficients;
Q - patēriņš;
D ir caurules diametrs.

Spiediens

Cauruļvada darba spiediens ir visaugstākais pārspiediens, kas nodrošina cauruļvada specifisko darbības režīmu. Lēmums par cauruļvada izmēru un sūkņu staciju skaitu parasti tiek pieņemts, ņemot vērā caurules darba spiedienu, sūkņu veiktspēju un izmaksas. Maksimālais un minimālais cauruļvada spiediens, kā arī darba vides īpašības nosaka attālumu starp sūkņu stacijām un nepieciešamo jaudu.

Nominālais spiediens PN ir nominālā vērtība, kas atbilst darba vides maksimālajam spiedienam pie 20 ° C, pie kura iespējama cauruļvada nepārtraukta darbība ar noteiktajiem izmēriem.

Palielinoties temperatūrai, caurules slodzes jauda samazinās, kā rezultātā tiek panākts pieļaujamais pārspiediens. Pe, zul vērtība parāda maksimālo spiedienu (g) ​​cauruļvadu sistēmā ar pieaugošu darba temperatūru.

Pieļaujamās pārslodzes grafiks:

Spiediena kritums cauruļvadā

Cauruļvada spiediena kritums aprēķina pēc formulas:

Δp = λ · L / d · ρ / 2 · v²

kur:
Δp ir spiediena kritums cauruļvada posmā;
L ir cauruļu sekcijas garums;
λ ir berzes koeficients;
d ir caurules diametrs;
ρ ir sūknētā materiāla blīvums;
v ir plūsmas ātrums.

Transporta darba vide

Visbiežāk, caurule tiek izmantots ūdens pārvadāšanai, bet tās var izmantot arī, lai pārvietotu vircas, apturēšana, tvaika, uc Sviestā cauruļvadi tiek izmantoti sūknēšanai plašu ogļūdeņražu un to maisījumiem, ir ļoti atšķirīga ķīmiskās un fizikālās īpašības. Jēlnaftas var pārvadāt lielākā attālumā no laukiem uz zemes vai uz naftas platformām uz termināļiem un starppunktiem rūpnīcā.

Cauruļvadi arī nosūta:

  • rafinēti naftas produkti, piemēram, benzīns, reaktīvo dzinēju degviela, petroleja, dīzeļdegviela, mazuts uc;
  • naftas ķīmijas izejvielas: benzols, stirols, propilēns uc;
  • aromātiskie ogļūdeņraži: ksilols, toluols, kumeīns utt.;
  • sašķidrinātās naftas degviela, piemēram, sašķidrināto dabasgāzi, sašķidrināto gāzi, propānu (gāzes ar standarta temperatūrā un spiedienā, bet pakļauj sašķidrināšanas spiedienam izmantot);
  • oglekļa dioksīds, šķidrais amonjaks (tiek pārvadāts kā šķidrums ar spiedienu);
  • viskozs bitumens un degvielas pārāk viskozs transportēt pa cauruļvadiem, tomēr destilāta eļļas daļu, ko izmanto, lai sašķidrinātu šo izejvielu un izrietošās maisījumi, kuru var transportēt pa cauruļvadiem;
  • ūdeņradis (īsos attālumos).

Transporta līdzekļa kvalitāte

Pārvadāto materiālu fiziskās īpašības un parametri lielā mērā nosaka cauruļvada konstrukciju un darbības parametrus. Īpatnējais smagums, saspiežamība, temperatūra, viskozitāte, ielejas punkts un tvaika spiediens ir galvenie darba vides parametri, kas jāņem vērā.

Šķidruma īpatnējais svars ir tās svars tilpuma vienībā. Daudzas gāzes tiek pārvadātas caur cauruļvadiem ar paaugstinātu spiedienu, un, sasniedzot zināmu spiedienu, dažas gāzes var būt arī sašķidrinātas. Tāpēc videi saspiešanas pakāpe ir kritisks parametrs cauruļvadu projektēšanai un caurlaides spējas noteikšanai.

Temperatūra netieši un tieši ietekmē cauruļvada darbību. Tas ir atspoguļots fakts, ka paaugstinās šķidruma tilpuma pēc temperatūras paaugstināšanos, ar nosacījumu, ka spiediens paliek nemainīgs. Temperatūras pazemināšana var ietekmēt gan efektivitāti, gan vispārējo sistēmas efektivitāti. Parasti, kad šķidrums temperatūra tiek pazemināta, tas ir kopā ar tās viskozitāte, kas rada papildus berzes vilkt uz iekšējās sienas caurules, kas prasa vairāk enerģijas, lai sūknēšanas pašu šķidro kolichetsvo pieaugumu. Ļoti viskozie materiāli ir jutīgi pret izmaiņām darba temperatūrā. Viskozitāte ir pretestība plūsmai vidēja mēra centistoki cSt. Viskozitāte nosaka ne tikai izvēli sūkni, bet arī attālumu starp sūkņu staciju.

Tiklīdz šķidruma temperatūra nokrītas zem plūsmas zuduma punkta, cauruļvada darbība kļūst neiespējama, un tiek veikti daži risinājumi, lai atsāktu darbību:

  • barot apkuri vai izolēt caurules, lai uzturētu barotnes darba temperatūru virs tā ielejamā punkta;
  • mainīt ķīmisko sastāvu pirms ievadīšanas cauruļvadā;
  • Transportējamā barotnes atšķaidīšana ar ūdeni.

Bagāžas cauruļu veidi

Tērauda caurules ir metinātas vai bezšuvju. Bezšuvju tērauda caurules tiek izgatavotas bez garenvirziena metinājuma šuvēm ar tērauda segmentiem ar termisko apstrādi, lai sasniegtu vēlamo izmēru un īpašības. Metinātā caurule tiek izgatavota, izmantojot vairākus ražošanas procesus. Šie divi veidi ir atšķirīgi attiecībā uz garenisko šuvju skaitu caurulē un izmantoto metināšanas iekārtu tipu. Tērauda metinātas caurules ir visbiežāk izmantotais veids naftas ķīmijas rūpniecībā.

Katru cauruļu sekciju savieno ar metinātām sekcijām, veidojot cauruļvadu. Cauruļvados, atkarībā no pielietojuma, tiek izmantoti arī stikla šķiedras, dažādu plastmasu, azbesta cementa utt. Caurules.

Kas savieno taisna caurule sekcijas, kā arī pāreju starp cauruļu segmentiem dažādiem diametriem tiek izmantoti speciāli ražoti sakabes elementiem (gabali, līkumi, vārsti).

Dažu cauruļvadu un piederumu daļu uzstādīšanai tiek izmantoti īpaši savienojumi.

Cauruļvada temperatūras pagarināšana

Kad cauruļvads ir zem spiediena, visa tā iekšējā virsma ir pakļauts vienmērīgi izkliedētu slodzi, kas izraisa iekšējie garenvirziena spēki rodas caurulē un papildu slodzi uz gala gultņiem. Temperatūras svārstības ietekmē arī cauruļvadu, izraisot izmaiņas caurules izmēros. Centieni cauruļvadā, kad temperatūras svārstības var privysit pieļaujamo vērtību un izraisīt pārmērīgu spriegumu bīstamu par izturību cauruļvada caurules materiāls, un atloku locītavas. Svārstības sūknējamā šķidruma temperatūra arī rada termisko stresu cauruļvadu, kas var tikt pārnests uz vārsta, sūkņu stacijas, un tā tālāk. Tas var novest pie spiediena pazemināšanās par cauruļvadu savienojumiem, atteices vārsta vai drgua elementiem.

Cauruļvada lieluma aprēķins, kad mainās temperatūra

Cauruļvada lineāro izmēru izmaiņu aprēķins, kad temperatūras izmaiņas izmaina šādu formulu:

a ir termiskās pagarinājuma koeficients, mm / (m ° C) (skatīt tabulu zemāk);
L ir cauruļvada garums (attālums starp fiksētiem balstiem), m;
Δt ir starpība starp maks. un min. sūknētā materiāla temperatūra, ° С.

Tabula lineāru izplešanās caurules no dažādiem materiāliem

Norādītie skaitļi ir uzskaitīto materiālu vidējās vērtības un cauruļvada aprēķināšana no citiem materiāliem, tāpēc tabulas dati nav jāuzskata par pamatu. Aprēķinot cauruļvadu, ieteicams izmantot lineāro pagarinājuma koeficientu, ko norādījis cauruļu ražotājs, pievienotajā tehniskajā specifikācijā vai datu lapā.

Thermal pagarinājums piping novērš gan special kompensācija cauruļvada posmos lietošana un ar savienojumiem, kas var sastāvēt no elastīgām vai kustīgajām daļām.

Kompensācijas zonas veido elastīgas taisnās cauruļvada daļas, kas izvietotas perpendikulāri otrai un piestiprinātas ar krāniem. Temperatūras pagarinājumā vienas daļas palielinājumu kompensē citas daļas noliekuma deformācija plaknē vai locīšanas un vērpes deformācija telpā. Ja cauruļvads pats kompensē siltuma izplešanos, to sauc par pašizlīdzināšanos.

Kompensācija ir saistīta arī ar elastīgiem elkoņiem. Daļa no pagarinājuma tiek kompensēta ar krānu elastību, otrā daļa tiek izslēgta, pateicoties laukuma materiāla elastīgajām īpašībām aiz kontaktligzdas. Kompensatori ir uzstādīti, ja nav iespējams izmantot kompensācijas sekcijas vai ja pašpiesārņojuma līmenis caurulē ir nepietiekams.

Saskaņā ar konstrukciju un darbības principu, kompensatoriem ir četri veidi: U-veida, lēca, viļņota, pildījuma kārba. Praksē bieži izmanto dzīvokļa kompensatorus ar L-, Z- vai U-formu. Attiecībā uz telpiskajiem kompensatoriem parasti ir 2 plakani savstarpēji perpendikulārie laukumi un viens kopīgs plecs. Elastīgie kompensatori ir izgatavoti no caurulēm vai elastīgiem diskiem vai silfoniem.

Cauruļvadu diametra optimālais izmērs

Cauruļvada optimālo diametru var atrast, pamatojoties uz tehniskiem un ekonomiskiem aprēķiniem. Cauruļvada izmēri, ieskaitot dažādu komponentu izmērus un funkcionalitāti, kā arī apstākļi, kādos cauruļvads jādarbina, nosaka sistēmas pārvadāšanas jaudu. Lielāki cauruļvadi ir piemēroti intensīvākai barotnes masas plūsmai, ja citas sistēmas sastāvdaļas ir pareizi izvēlētas un izveidotas šajos apstākļos. Parasti, jo garāks ir galvenās caurules garums starp sūkņu stacijām, jo ​​lielāks ir spiediena kritums cauruļvadā. Turklāt izmaiņas sūknējamā vides fizikālajās īpašībās (viskozitāte utt.) Arī var būtiski ietekmēt spiedienu līnijā.

Optimālais izmērs ir mazākais no piemērota izmēra caurulēm konkrētam pielietojumam, kas ir rentabls visā sistēmas darbības laikā.

Caurules darbības rezultātu aprēķina formula:

Q - sūknēta šķidruma plūsmas ātrums;
d ir cauruļvada diametrs;
v ir plūsmas ātrums.

Praksē, lai aprēķinātu optimālo vērtību caurules diametra tiek izmantots optimālu ātrumu sūknējamās vidē, kas novilkta no references materiālu veido, pamatojoties uz eksperimentāliem datiem:

No šejienes iegūst formulu optiskā caurules diametra aprēķināšanai:

Q - norādītais šķidruma plūsmas ātrums;
d ir cauruļvada optimālais diametrs;
v ir optimālais plūsmas ātrums.

Pie lielām plūsmas ātrumiem parasti tiek izmantotas mazāka diametra caurules, kas nozīmē zemākas cauruļvada iegādes izmaksas, tās uzturēšanas un uzstādīšanas darbu (mēs apzīmē K1) Tā kā ātrums palielinās, palielinās galvas zudums berzes dēļ un vietējā pretestībā, kā rezultātā palielinās šķidruma sūknēšanas izmaksas (mēs apzīmē K2)

Liela diametra cauruļvadiem maksā K1 būs lielāks un izmaksas ekspluatācijas laikā K2 zemāk. Ja jūs pievienojat K vērtības1 un K2, tad mēs iegūstam kopējās minimālās izmaksas K un cauruļvada optimālo diametru. Izmaksas K1 un K2 šajā gadījumā, tajā pašā laika periodā.

Cauruļvada kapitāla izmaksu aprēķins (formula)

m ir cauruļvada masa, t;
CM - izmaksas par 1 tonnu rub / t;
KM - koeficients, kas palielina uzstādīšanas izmaksas, piemēram, 1,8;
n - kalpošanas laiks, gadi.

Norādītās ekspluatācijas izmaksas, kas saistītas ar enerģijas patēriņu:

N - jauda, ​​kW;
nNam - darba dienu skaits gadā;
ArUh - vienas kWh enerģijas izmaksas, rubļi / kWh.

Formulas cauruļvada lieluma noteikšanai

Tādu cauruļu izmēru noteikšanas vispārīgo formulu piemērs, neņemot vērā iespējamos papildu ietekmējošos faktorus, piemēram, eroziju, suspendētas cietās vielas uc:

d = [1525 · (Q · n) / √ S] 0,375

d = 1,75 · √ [(W · v_g · x) / V]

Optimāls plūsmas ātrums dažādām cauruļvadu sistēmām

Caurules optimālo izmēru izvēlas no nosacījuma par minimālajām izmaksām, kas saistītas ar sūknēšanas starp vidi cauruļvadā un caurules izmaksas. Tomēr jums ir jāņem vērā arī ātruma ierobežojumi. Dažreiz cauruļvadu izmēram jāatbilst procesa prasībām. Tikpat bieži kā cauruļvada izmērs ir saistīts ar spiediena kritumu. Sākotnējā projektēšanas aprēķinos, kur netiek ņemti vērā spiediena zudumi, procesa cauruļvada izmērs tiek noteikts ar pieļaujamo ātrumu.

Ja cauruļvada plūsmas virzienā ir izmaiņas, tad tas ievērojami palielina vietējo spiedienu uz virsmu, kas ir perpendikulāra plūsmas virzienam. Šis palielinājums ir atkarīgs no šķidruma ātruma, blīvuma un sākotnējā spiediena. Tā kā ātrums ir apgriezti proporcionāls diametram, liela ātruma šķidrumiem, izvēloties cauruļvada izmēru un konfigurāciju, jāpievērš īpaša uzmanība. Cauruļu optimālais lielums, piemēram, sērskābei, ierobežo vides ātrumu līdz vērtībai, pie kuras nav pieļaujama sienu izskalošana caurules līkumos, tādējādi novēršot cauruļu konstrukcijas bojājumus.

Smaguma plūsma

Cauruļvada lieluma aprēķins plūsmas gadījumā, pārvietojoties smaguma dēļ, ir diezgan sarežģīts. Šīs plūsmas formas kustības raksturs caurulē var būt vienfāzes (pilna caurule) un divfāžu (daļēja piepildīšana). Divu fāžu plūsma tiek veidota, ja caurulē vienlaikus atrodas šķidrums un gāze.

Atkarībā no šķidruma un gāzes proporcijas, kā arī to ātruma, divfāžu plūsmas režīms var atšķirties no burbuļa līdz izkliedētam.

Kustības spēks šķidrumam, pārvietojoties smaguma dēļ, tiek nodrošināts ar sākotnējo un pēdējo punktu augstumu starpību, un būtiska nozīme ir sākotnējā punkta atrašanās vietai virs gala. Citiem vārdiem sakot, augstuma starpība nosaka šķidruma potenciālās enerģijas atšķirību šajās pozīcijās. Izvēloties cauruļvadu, šis parametrs tiek ņemts vērā arī. Turklāt dzinējspēka lielumu ietekmē spiediena vērtības sākuma un beigu punktā. Spiediena pazemināšanās palielina šķidruma plūsmas ātrumu, kas, savukārt, ļauj atlasīt mazāka diametra cauruļvadu un otrādi.

Ja gala punkts ir savienots ar paaugstinātu spiediena sistēmu, piemēram, destilācijas kolonnu, ir nepieciešams atņemt līdzvērtīgu spiedienu no esošās augstuma starpības, lai novērtētu faktisko efektīvo diferenciālo spiedienu. Tāpat, ja cauruļvada sākumpunkts ir vakuumā, tad, izvēloties cauruļvadu, jāņem vērā arī tā ietekme uz pilnīgo diferenciālo spiedienu. Galīgo cauruļu izvēli veic, izmantojot diferenciālo spiedienu, kurā ņemti vērā visi iepriekš minētie faktori, un tas nav balstīts tikai uz sākotnējo un beigu punktu augstumu atšķirībām.

Karstā šķidruma plūsma

Apstrādes rūpnīcās parasti saskaras ar dažādām problēmām, strādājot ar karstu vai vārītu materiālu. Galvenais iemesls ir karstā šķidruma plūsmas daļas iztvaicēšana, tas ir, šķidruma fāzes pārveidošana tvaikā cauruļvada vai iekārtas iekšienē. Tipisks piemērs ir centrbēdzes sūkņa kavitācijas parādība, kam seko šķidruma temperatūras vārīšana un tvaika burbuļu veidošanās (tvaika kavitācija) vai izdalīto gāzu izdalīšanās burbuļos (gāzu kavitācija).

Lielāki cauruļvadi ir vēlami zemāka caurplūduma dēļ, salīdzinot ar mazāku caurulīti ar pastāvīgu plūsmas ātrumu, ko izraisa augstāka NPSH sasniegšana sūkņa ieplūdes līnijā. Arī kavitācijas iemesls spiediena zuduma gadījumā var būt pēkšņas izmaiņas plūsmas virzienā vai cauruļvada izmēra samazinājums. Rezultātā esošais tvaika un gāzes maisījums rada šķērsli plūsmai un var izraisīt cauruļvada bojājumus, tādēļ cauruļvada ekspluatācijas laikā kavitācijas fenomens ir ļoti nevēlams.

Iekārtas / instrumentu apvedceļš

Iekārtas un ierīces, jo īpaši tās, kuras var radīt ievērojamus spiediena kritumus, ti, siltummaiņus, vadības vārstus utt., Ir aprīkotas ar apvedceļa cauruļvadiem (lai varētu netraucēt procesu pat apkopes darbu laikā). Šādiem cauruļvadiem parasti ir 2 izolācijas vārsti, kas uzstādīti uzstādīšanas līnijā, un vārsts, kas regulē plūsmu paralēli šai iekārtai.

Normālai darbībai šķidruma plūsma, kas iet caur ierīces galvenajām sastāvdaļām, piedzīvo papildu spiediena kritumu. Saskaņā ar to tiek aprēķināts izplūdes spiediens, ko rada pieslēgtais aprīkojums, piemēram, centrbēdzes sūknis. Sūknis tiek izvēlēts, ņemot vērā kopējo spiediena kritumu iekārtā. Braucot pa apvada cauruļvadu, šis papildu spiediena kritums nav, bet ritošais sūknis spēlē iepriekšējā spēka plūsmu atbilstoši tā veiktspējai. Lai izvairītos no plūsmas parametru atšķirībām caur aparatūru un apvedceļa līniju, ieteicams izmantot mazāku apvadīšanas līniju ar regulēšanas vārstu, lai izveidotu spiedienu, kas atbilst galvenajai iekārtai.

Paraugu ņemšanas līnija

Parasti tiek ņemts neliels daudzums šķidruma, lai noteiktu tā sastāvu. Izvēle var notikt jebkurā procesa posmā, lai noteiktu izejmateriāla, starpprodukta, galaprodukta vai vienkārši transportējamās vielas, piemēram, notekūdeņu, siltumnesēja utt. Sastāvu. Cauruļvada posma lielums, kurā notiek paraugu ņemšana, parasti ir atkarīgs no analizējamās darba vides veida un paraugu ņemšanas vietas atrašanās vietas.

Piemēram, gāzēm augsta spiediena apstākļos ir pietiekami mazi cauruļvadi ar vārstiem, lai ņemtu nepieciešamo paraugu skaitu. Paraugu ņemšanas līnijas diametra palielināšana samazina analizējamās vielas izvēlēto šķīdumu proporciju, taču šādu paraugu ņemšanu kļūst grūtāk kontrolēt. Tajā pašā laikā neliela paraugu ņemšanas līnija ir vāji piemērota, lai analizētu dažādas suspensijas, kurās cietās vielas var aizsprostot plūsmas sekciju. Tādējādi paraugu ņemšanas līnijas lielums suspensiju analīzei lielā mērā ir atkarīgs no cieto daļiņu izmēra un vides īpašībām. Līdzīgi secinājumi attiecas uz viskoziem šķidrumiem.

Izvēloties cauruļvada lielumu paraugu ņemšanai, parasti jāņem vērā:

  • noņemamā šķidruma īpašības;
  • darba vides zaudēšana atlases laikā;
  • drošības prasības paraugu ņemšanas laikā;
  • izmantošanas vieglums;
  • paraugu ņemšanas vietas atrašanās vieta.

Dzesēšanas šķidruma aprite

Cauruļvadiem ar cirkulējošo dzesēšanas šķidrumu priekšroka dodama lieliem ātrumiem. Tas galvenokārt saistīts ar faktu, ka dzesēšanas šķidruma dzesēšanas torņā ir pakļauta saules gaisma, kas rada apstākļus aļģu saturoša slāņa veidošanai. Daļa no šīs aļģu saturošā tilpuma nonāk cirkulējošā dzesēšanas šķidrumā. Pie zemām plūsmas ātruma, cauruļvadā sāk augt aļģes, un pēc kāda laika tās rada grūtības dzesēšanas šķidruma apritē vai tās pārejā siltummainī. Šajā gadījumā ieteicams izmantot augstu apgrozības ātrumu, lai izvairītos no aļģu bloķēšanās cauruļvadā. Parasti intensīvi cirkulējošā dzesēšanas šķidruma lietošana tiek izmantota ķīmiskajā rūpniecībā, kas prasa liela izmēra un garu cauruļvadus, lai nodrošinātu dažādu siltummaini.

Tvertnes pārplūde

Rezervuārus aprīko ar pārplūdes caurulēm šādu iemeslu dēļ:

  • Izvairīšanās no šķidruma zuduma (šķidruma pārpalikums nonāk citā rezervuārā, nevis izlej no sākotnējā rezervuāra);
  • Nepieļautu šķidrumu noplūdi ārpus tvertnes;
  • šķidruma līmeņa saglabāšana tvertnēs.

Visos iepriekš minētajos gadījumos pārplūdes caurules ir konstruētas tā, lai maksimāli pieļaujamā šķidruma plūsma nonāktu tvertnē neatkarīgi no plūsmas ātruma pie izplūdes. Citi cauruļu izvēles principi ir līdzīgi pašplūsmas šķidrumu cauruļvadu izvēlei, tas ir, saskaņā ar pieejamā vertikālā augstuma klātbūtni starp pārplūdes cauruļvada sākotnējo un beigu punktu.

Augšējais pārplūdes caurules punkts, kas ir arī tā sākumpunkts, atrodas pieslēgšanas punktā tvertnei (tvertnes pārplūdes caurule) atrodas gandrīz pašā augšā, un zemākais beigu punkts var būt pie iztukšošanas trauka gandrīz pie zemes. Tomēr pārpildes līnija var beigties ar augstāku atzīmi. Šajā gadījumā pieejamā diferenciālā galva būs mazāka.

Dūņu plūsma

Kalnrūpniecības gadījumā rūdu parasti iegūst grūti sasniedzamos apgabalos. Šādās vietās, kā parasti, nav dzelzceļa vai autoceļu savienojuma. Šādās situācijās vispieņemamākais tiek uzskatīts hidrauliskais mediju transportēšana ar cietajām daļiņām, tostarp gadījumos, kad kalnrūpniecības iekārtas atrodas pietiekamā attālumā. Mīklas cauruļvadi tiek izmantoti dažādās rūpniecības vietās cieto vielu pārvešanai sasmalcinātā veidā ar šķidrumu. Šādi cauruļvadi ir izrādījušies visrentablākie salīdzinājumā ar citām metodēm, kā pārvadāt cietos medijus lielos apjomos. Turklāt to priekšrocības ietver pietiekamu drošību, jo nav vairāku veidu transporta un videi draudzīgas.

Suspensēto vielu suspensijas un maisījumi šķidrumos tiek uzglabāti periodiskā sajaukšanās stāvoklī, lai saglabātu vienveidību. Pretējā gadījumā rodas atdalīšanas process, kurā suspendētās daļiņas atkarībā no to fizikālajām īpašībām peld līdz šķidruma virsmai vai nokļūst apakšā. Maisīšana tiek nodrošināta ar iekārtām, piemēram, tvertni ar maisītāju, bet cauruļvados tas tiek sasniegts, saglabājot barotnes turbulentus plūsmas apstākļus.

Plūsmas ātruma samazināšana šķidrumā suspendēto daļiņu transportēšanā nav vēlama, jo fāzu atdalīšanas process var sākties plūsmā. Tas var izraisīt cauruļvada bloķēšanu un transportētās cietās vielas koncentrācijas izmaiņas plūsmā. Turbulentā plūsmas režīms veicina intensīvu plūsmas apjoma sajaukšanos.

No otras puses, pārmērīgs cauruļvada lieluma samazinājums arī bieži noved pie tās bloķēšanas. Tāpēc cauruļvada lieluma izvēle ir svarīgs un izšķirošs solis, kas prasa iepriekšēju analīzi un aprēķinus. Katrs gadījums jāapskata individuāli, jo dažādas dūņas izturas atšķirīgi dažādos šķidruma ātrumos.

Cauruļvada remonts

Cauruļvada ekspluatācijas laikā var būt dažāda veida noplūde, kas nepieciešama tūlītējai izslēgšanai, lai uzturētu sistēmas darbību. Galvenā cauruļvada remontu var veikt vairākos veidos. Tas var būt jebkura cauruļvada segmenta vai mazas sadaļas, kurā ir notikusi noplūde, vai arī esošajai caurulei piestiprināta plāksteris. Bet, pirms izvēlēties jebkuru remonta metodi, ir nepieciešams rūpīgi izpētīt noplūdes cēloni. Dažos gadījumos var būt nepieciešams ne tikai labot, bet arī mainīt caurules maršrutu, lai novērstu tā atkārtotu bojājumu.

Pirmajā remontdarbu stadijā ir jānosaka cauruļu sekcijas atrašanās vieta, kam nepieciešama intervence. Turklāt, atkarībā no cauruļvada veida, tiek noteikts vajadzīgo iekārtu saraksts un pasākumi, kas vajadzīgi, lai novērstu noplūdi, un nepieciešamie dokumenti un atļaujas tiek savākti, ja remontējamās cauruļu sadaļa atrodas cita īpašnieka teritorijā. Tā kā lielākā daļa cauruļu atrodas zem zemes, var būt nepieciešams izvilkt daļu no caurules. Pēc tam tiek pārbaudīts cauruļvada pārklājums vispārējam stāvoklim, pēc kura daļu pārklājuma tiek noņemta remonta darbiem tieši ar cauruli. Pēc remonta var veikt dažādus pārbaudes pasākumus: ultraskaņas testēšana, krāsu kļūdu atrašana, magnētiskā pulvera defektu noteikšana utt.

Lai gan dažos remontdarbos nepieciešama cauruļvada pilnīga izslēgšana, bieži vien pietiek ar pagaidu pārtraukumu no darba, lai izolētu remontējamās sekcijas vai sagatavotu apvedceļa līniju. Tomēr vairumā gadījumu tiek veikts remonts, kad cauruļvads ir pilnībā atvienots. Cauruļvada posma izolāciju var veikt ar aizbāzni vai aizbāzni. Tālāk, instalējiet nepieciešamo aprīkojumu un tieši veic remontu. Remonts tiek veikts uz bojātās vietas, izdalīts no vides un bez spiediena. Remonta beigās kontaktdakšas atver un atjauno cauruļvada integritāti.

Cauruļvadu aprēķināšanas un izvēles problēmu problēmu piemēri

Uzdevuma numurs 1. Cauruļvada minimālā diametra noteikšana

Stāvoklis: naftas ķīmijas rūpnīcā sūknis paraksilēns C6H4(CH3)2 pie T = 30 ° C ar tilpumu Q = 20 m 3 / h tērauda caurules sekcijas garumā L = 30 m. P-ksilola blīvums ir ρ = 858 kg / m 3 un viskozitāte μ = 0,6 cP. Tērauda absolūtais raupjums ε ir vienāds ar 50 μm.

Sākotnējie dati: Q = 20 m 3 / h; L = 30 m; ρ = 858 kg / m 3; μ = 0,6 cP; ε = 50 μm; Δp = 0,01 MPa; ΔH = 1,188 m

Uzdevums: nosakiet minimālo caurules diametru, kādā šajā rajonā spiediena kritums nepārsniegs Δp = 0.01 MPa (ΔH = 1,188 m P-ksilola kolonna).

Risinājums: plūsmas ātrums v un caurules diametrs d nav zināmi, tāpēc nav iespējams aprēķināt Reinoldsa skaitli Re vai relatīvo raupjumu / d. Ir nepieciešams ņemt berzes koeficienta λ vērtību un aprēķināt atbilstošo vērtību d, izmantojot enerģijas zuduma vienādojumu un nepārtrauktības vienādojumu. Tad, pamatojoties uz d vērtību, tiks aprēķināts Reinoldsa skaitlis Re un relatīvais raupjums ε / d. Tad, izmantojot Moody diagrammu, tiks iegūta jauna f vērtība. Tādējādi, izmantojot secīgu iterāciju metodi, tiks noteikta vajadzīgā diametra d vērtība.

Izmantojot nepārtrauktības vienādojuma formu v = Q / F un plūsmas laukuma formulu F = (π · d²) / 4, mēs pārveidojam Darcy-Weisbach vienādojumu šādi:

ΔH = λ · L / d · v² / (2 · g) = λ · L / d · Q² / (2 · g · F²) = λ · [(L · Q²) / (2 · d · g · [ (π · d²) / 4] ²)] = (8 · L · Q²) / (g · π²) · λ / d 5 = (8 · 30 · (20/3600) ²) / (9,81 · 3, 14²) · λ / d 5 = 7.658 · 10 -5 · λ / d 5

Tālāk mēs izteiksim diametru:

d = 5 √ (7.658 · 10 -5 · λ) / ΔH = 5 √ (7.658 · 10 -5 · λ) / 10000 = 0.0238 · 5 √ √λ

Tagad ļaujiet mums izteikt Reinoldsa numura diametru d:

Re = (ρ · v · d) / μ = (4 · ρ · Q) / (π · μ · d) = (4 · 858 · 20) / (3,14 · 3600 · 0,6 · 10 -3 · D) = 10120 / d

Mēs veicam līdzīgas darbības ar relatīvo raupjumu:

Pirmajam atkārtojuma solim ir nepieciešams izvēlēties berzes koeficienta vērtību. Ņem vidējo vērtību λ = 0,03. Tālāk mēs veicam secīgu d, Re un ε / d aprēķinu:

d = 0,0238 · 5 √ (λ) = 0,0118 m

Re = 10120 / d = 857627

ε / d = 0,00005 / d = 0,00424

Zinot šīs vērtības, mēs veica apgriezto darbību un noteica berzes koeficienta λ vērtību, kas būs vienāda ar 0,017, izmantojot Moody diagrammu. Tad atkal mēs atrodam d, Re un ε / d, bet jaunā vērtība λ:

d = 0,0238 · 5 √ λ = 0,0105 m

Re = 10120 / d = 963809

ε / d = 0,00005 / d = 0,00476

Atgriežoties pie Moody diagrammas, mēs iegūstam rafinētu vērtību λ, kas ir vienāds ar 0.0172. Iegūtā vērtība atšķiras no iepriekš izvēlētā kopējā ar [(0,0172-0,017) / 0,0172] · 100 = 1,16%, tādēļ jaunajā iterācijas posmā nav vajadzības, un iepriekš atrastās vērtības ir pareizas. No tā izriet, ka minimālais caurules diametrs ir 0,0105 m.

Uzdevuma numurs 2. Avota datu optimālā ekonomiskā risinājuma izvēle

Stāvoklis: Lai īstenotu tehnoloģisko procesu, tika ierosinātas divas dažāda diametra cauruļvada versijas. Pirmais risinājums ietver lielākas diametra cauruļu izmantošanu, kas nozīmē lielas kapitāla izmaksask1 = 200 000 rubļu. Tomēr gada izmaksas būs mazākas un būs Ce1 = 30 000 rubļu. Otrajā variantā tiek izvēlēti mazākā diametra caurules, kas samazina kapitāla izmaksas Ck2 = 160000 rub., Bet palielina ikgadējās uzturēšanas izmaksas līdz Ce2 = 36000 rub. Abas opcijas ir paredzētas n = 10 darbības gadiem.

Bāzes līnija: Ck1 = 200 000 rubļu; Are1 = 30 000 rubļu; Ck2 = 160000 rub.; Are2 = 35 000 rubļu; n = 10 gadi.

Uzdevums: ir nepieciešams noteikt ekonomiski izdevīgāko risinājumu.

Risinājums: Acīmredzot otrā iespēja ir izdevīgāka zemāku kapitāla izmaksu dēļ, bet pirmajā gadījumā pastāv priekšrocība, jo pašreizējās izmaksas ir zemākas. Mēs izmantojam formulu, lai noteiktu papildu kapitāla izmaksu atmaksāšanās periodu, jo ietaupījumi ir saistīti ar uzturēšanu:

No tā izriet, ka ar kalpošanas laiku līdz 8 gadiem ekonomiskās priekšrocības būs otrās iespējas dēļ, jo zemākas kapitāla izmaksas, bet kopējās kopējās izmaksas abiem projektiem būs vienādas ar 8 darbības gadu, un pirmā iespēja būs izdevīgāka.

Tā kā cauruļvada ekspluatācija ir plānota 10 gadus, priekšrocība ir dot pirmo iespēju.

3. uzdevuma numurs. Cauruļvada optimālā diametra izvēle un aprēķināšana

Priekšnoteikums: Tiek projektētas divas ražošanas līnijas, kurās nešķīstošo šķidrumu ievada ar plūsmas ātrumu Q1 = 20 m 3 / h un Q2 = 30 m 3 / h. Lai vienkāršotu cauruļvadu uzstādīšanu un apkalpošanu, tika nolemts izmantot abām līnijām tāda paša diametra caurules.

Bāzes līnija: Q1 = 20 m 3 / h; Q.2 = 30 m 3 / h.

Uzdevums: Ir nepieciešams noteikt atbilstošo caurules diametru problēmas problēmas apstākļos d.

Risinājums: Tā kā cauruļvadam nav papildu prasības, galvenais atbilstības kritērijs būs iespēja sūknēt šķidrumu ar norādītajām izmaksām. Mēs izmantojam tabulāros datus par optimālajiem ātrumiem nejaušam šķidrumam spiediena cauruļvadā. Šis diapazons būs vienāds ar 1,5-3 m / s.

No tā izriet, ka ir iespējams noteikt optimālo diametru diapazonus, kas atbilst optimālo ātrumu vērtībām dažādiem plūsmas ātrumiem, un noteikt to krustošanās laukumu. Šā apgabala caurules diametrs neapšaubāmi atbilst piemērojamo prasību prasībām attiecībā uz uzskaitītajiem plūsmas ātrumiem.

Noteikt Q diapazona optimālo diametru1 = 20 m 3 / h, izmantojot plūsmas formulu, izsakot no tās caurules diametru:

Aizstāj optimālā ātruma minimālās un maksimālās vērtības:

d1 min = √ (4 · 20) / (3600 · 3.14 · 1.5) = 0,069 m

d1max = √ (4 · 20) / (3600 · 3.14 · 3) = 0,049 m

Tas nozīmē, ka caurules ar diametru 49-69 mm ir piemērotas līnijai ar plūsmas ātrumu 20 m 3 / h.

Noteikt Q diapazona optimālo diametru2 = 30 m 3 / stundā:

d2 min = √ (4 · 30) / (3600 · 3.14 · 1.5) = 0,084 m

d2max = √ (4 · 30) / (3600 · 3.14 · 3) = 0,059 m

Kopumā mēs redzam, ka pirmajā gadījumā optimālais diametrs ir 49-69 mm, bet otrais - 59-84 mm. Šo divu diapazonu krustojums un vajadzīgo vērtību kopums. Mēs iegūstam, ka divām līnijām var izmantot caurules ar diametru no 59 līdz 69 mm.

4. uzdevuma numurs. Noteikt ūdens plūsmas režīmu caurulē

Nosacījums: cauruļvads ar 0,2 m diametru, caur kuru ūdens plūst ar plūsmas ātrumu 90 m 3 / h. Ūdens temperatūra ir t = 20 ° C, pie kuras dinamiskā viskozitāte ir 1 · 10 -3 Pa · s, un blīvums ir 998 kg / m 3.

Sākotnējie dati: d = 0,2 m; Q = 90 m 3 / h; μ = 1 · 10 -3; ρ = 998 kg / m 3.

Uzdevums: Ir nepieciešams iestatīt ūdens plūsmas režīmu caurulē.

Risinājums: plūsmas režīmu var noteikt pēc Reinoldsa kritērija (Re) vērtības, kura aprēķināšanai vispirms ir nepieciešams noteikt ūdens plūsmas ātrumu caurulē (v). V vērtību var aprēķināt no apaļās caurules plūsmas vienādojuma:

v = Q · 4 / (π · d²) = [90/3600] · [4 / (3,14 · 0,2 ²)] = 0,8 m / s

Izmantojot plūsmas ātruma konstatēto vērtību, mēs to aprēķinām Reinoldsa kritērija vērtību:

Re = (ρ · v · d) / μ = (998 · 0.8 · 0.2) / (1 · 10 -3) = 159680

Reinoldsa Re kritērija kritiskā vērtībakr attiecībā uz apaļajām caurulēm tas ir vienāds ar 2300. Iegūtā kritērija vērtība ir lielāka par kritisko vērtību (159680> 2300), tādēļ plūsmas režīms ir nemierīgs.

Uzdevuma numurs 5 Reinoldsa skaitļa noteikšana

Stāvoklis: uz slīpa piere, kuram ir taisnstūrveida profils ar platumu w = 500 mm un augstumu h = 300 mm, ūdens plūst, nepārsniedzot = 50 mm, līdz vārpstas augšējai malai. Ūdens patēriņš šajā gadījumā ir Q = 200 m 3 / h. Aprēķinos tiek pieņemts, ka ūdens blīvums ir ρ = 1000 kg / m 3, un dinamiskā viskozitāte ir μ = 1 · 10 -3 Pa · s.

Sākotnējie dati: w = 500 mm; h = 300 mm; l = 5000 mm; a = 50 mm; Q = 200 m 3 / h; ρ = 1000 kg / m 3; μ = 1 · 10 -3 Pa · s.

Uzdevums: Noteikt Reinoldsa kritērija vērtību.

Risinājums: Tā kā šajā gadījumā šķidrums pārvietojas taisnstūra notekas vietā apļveida caurulītē, turpmākiem aprēķiniem ir jāatrod līdzvērtīgs kanāla diametrs. Parasti to aprēķina pēc formulas:

kur:
Flabi - šķidruma plūsmas šķērsgriezuma laukums;
Par - mitrināts perimetrs.

Ir skaidrs, ka šķidruma plūsmas platums sakrīt ar kanāla w platumu, bet šķidruma plūsmas augstums ir vienāds ar h-a mm. Šajā gadījumā mēs iegūstam:

Flabi = w · (h-a) = 0,5 · (0,3-0,05) = 0,125 m 2

Tagad kļūst iespējams noteikt ekvivalento šķidruma plūsmas diametru:

Tālāk mēs izmantojam plūsmas formulu, kas izteikta plūsmas ātruma un tās šķērsgriezuma laukuma izteiksmē, un atrodam plūsmas ātrumu:

v = Q / Flabi = 200 / (3600 · 0.125) = 0.45

Izmantojot iepriekš atrastās vērtības, kļūst iespējams izmantot formulu Reynolds kritērija aprēķināšanai:

Re = (ρ · v · duh) / μ = (1000 · 0.45 · 0.5) / (1 · 10 -3) = 225000

Uzdevuma numurs 6. Cauruļvada spiediena zuduma lieluma aprēķināšana un noteikšana

Stāvoklis: ūdens sūknēšana tiek piegādāta gala lietotājam caur apļveida cauruli, kura konfigurācija ir parādīta attēlā. Ūdens patēriņš ir Q = 7 m 3 / h. Caurules diametrs d = 50 mm, un absolūtais raupjums ir Δ = 0,2 mm. Aprēķinos tiek pieņemts, ka ūdens blīvums ir ρ = 1000 kg / m 3, un dinamiskā viskozitāte ir μ = 1 · 10 -3 Pa · s.

Sākotnējie dati: Q = 7 m 3 / h; d = 120 mm; Δ = 0,2 mm; ρ = 1000 kg / m 3; μ = 1 · 10 -3 Pa · s.

Uzdevums: Aprēķināt spiediena zuduma vērtību cauruļvadā (Hop)

Risinājums: Pirmkārt, mēs atrodam cauruļvada plūsmas ātrumu, par kuru mēs izmantojam šķidruma plūsmas formulu:

v = (4 · Q) / (π · d²) = [(4 · 7) / (3.14 · 0.05²)] · 1/3600 = 1 m / s

Atrastais ātrums ļauj noteikt Reinoldsa kritēriju vērtību konkrētai plūsmai:

Re = (w · d · ρ) / μ = (1 · 0,05 · 1000) / (1 · 10 -3) = 50000

Galvas zuduma kopējā vērtība ir berzes zudumu summa, kad šķidrums pārvietojas caur cauruli (Ht) un spiediena zudumi vietējos pretestos (Hms)

Berzes zudumu var aprēķināt pēc šādas formulas:

kur:
λ ir berzes koeficients;
L ir cauruļvada kopējais garums;
[v² / (2 · g)] - plūsmas ātruma galva.

Atrodiet plūsmas ātruma galvas lielumu:

v² / (2 · g) = 1² / (2 · 9,81) = 0,051 m

Lai noteiktu berzes koeficienta vērtību, ir jāizvēlas pareizā aprēķina formula, kas ir atkarīga no Reinoldsa kritērija vērtības. Lai to izdarītu, mēs atrodam cauruļu relatīvā nelīdzenuma vērtību pēc formulas:

e = Δ / d = 0,2 / 50 = 0,004

Tālāk mēs aprēķinām divas papildu vērtības:

10 / e = 10 / 0,004 = 2500

Iepriekš atrastā Reinoldsa kritērija vērtība ietilpst intervālā 10 / e 0,25 = 0,11 · (0,004 + 68/50 000) 0,25 = 0,03

Tagad kļūst iespējams noteikt berzes spiediena zuduma lielumu:

HT = [(λ · l) / d] · [v² / (2 · g)] = [(0,03 · 30) / 0,05] · 0,051 = 0,918 m

Kopējie spiediena zudumi vietējā pretestībā ir spiediena zudumu summa katrā vietējā pretestībā, kas šajā problēmā ir divi pagriezieni un viens parasts vārsts. Jūs varat tos aprēķināt pēc formulas:

kur ζ ir vietējās pretestības koeficients.

Tā kā tabulā norādītās galvas attiecības vērtības nav tādas caurulēm ar diametru 50 mm, tāpēc to noteikšanai ir nepieciešams izmantot aptuveno aprēķinu metodi. Caurules ar diametru 40 mm pretestības koeficients (ζ) ir 4,9 un cauruļu ar diametru 80 mm - 4. Pieņemsim, ka starp vērtībām starp šīm vērtībām atrodas taisne, tas ir, to izmaiņas apraksta ar formulu ζ = a · d + b, kur a un b ir taisnīguma vienādojuma koeficienti. Izveidot un atrisināt vienādojumu sistēmu: